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Società Italiana di Fisica
Springer-Verlag 2000

Moving nonlinear localized vibrational modes
for a one-dimensional homogenous lattice
with quartic anharmonicity

G.H. Zhou1,2,3,a, Q.L. Xia2, and J.R. Yan1,2

1 CCAST (World Laboratory), PO Box 8730, Beijing 10080, PR China
2 Department of Physics and Institute of Nonlinear Science, Hunan Normal University, Changsha 410081, PR China
3 International Center for Materials Physics, Chinese Academy of Science, Shenyang 110015, PR China

Received 13 October 1999 and Received in final form 15 May 2000

Abstract. Moving nonlinear localized vibrational modes (i.e. discrete breathers) for the one-dimensional
homogenous lattice with quartic anharmonicity are obtained analytically by means of a semidiscrete ap-
proximation plus an integration. In addition to the pulse-envelope type of moving modes which have been
found previously both analytically and numerically, we find that a kink-envelope type of moving mode
which has not been reported before can also exist for such a lattice system. The two types of modes in
both right- and left-moving form can occur with different carrier wavevectors and frequencies in separate
parts of the ω(q) plane. Numerical simulations are performed and their results are in good agreement with
the analytical predictions.

PACS. 63.90.+t Other topics in lattice dynamics – 63.20.Pw Localized modes

1 Introduction

Some physical properties of solids (such as specific heat at
high temperature, melting, thermal expansion, tempera-
ture dependence of the elastic constants, and damping of
high frequency sound waves) may mainly or partly de-
pend on crystal anharmonicity, so that much attention has
been paid to nonlinear localized vibrational modes, i.e.,
discrete breathers induced by the anharmonicity in pure
crystal lattices (see, e.g., a recent review article [1] and
references therein). These modes may have sizable ampli-
tudes and can be localized on only a few lattice sites with
either odd [2] or even [3] symmetry form in the highly dis-
crete and sufficiently strong anharmonicity case, but gen-
erally they appear in the characteristic long wavelength
envelope form.

As is known, impurity vibrational modes are centered
on defect sites only in inhomogenous lattices. On the other
hand, in homogenous lattices the center of a nonlinear vi-
brational mode may appear at any lattice site because
of the translational invariance of these lattices, so it is
believed that the anharmonicity of perfect lattices should
support moving nonlinear localized modes. However, most
of the research on this subject has concentrated on station-
ary solutions [4–6] of nonlinear modes for different kinds
of nonlinear lattice systems. There has been some work
done on moving solutions by numerical simulations [7–9]
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for lattices with pure quartic anharmonicity, but little us-
ing analytical approaches even for such relatively simple
nonlinear lattice models. Multiple-scale expansion is an
effective technique for dealing with nonlinear equations
and some approximate analytical solutions for this lattice
model have been obtained [10–13] in this way, but the cal-
culations are somewhat tedious and only the main com-
ponent in the expansion can be considered. The lattice
Green’s function method, which treats the whole ques-
tion discretely, has also been applied to this lattice model
and some good approximate analytical solutions have been
obtained [2,14]. However, in each of these two analytical
methods, it is not possible to consider all of the possi-
ble solutions over the whole ω(q) plane of the system. In
the present work, we use a simple alternative approach
to solve the equation of motion for a one-dimensional ho-
mogenous lattice with pure quartic inter-site nonlinearity,
the so-called Fermi-Pasta-Ulam lattice model. The dis-
creteness of the carrier wave is treated explicitly while
the envelope is described in the continuum approxima-
tion. Then the equation of motion reduces to an ellipti-
cal integration. Besides the pulse-envelope type of modes
(sech function) which appears in references [4–6] in its
stationary form and references [7–9,12–14] in its moving
form, we find that the kink-envelope type of moving modes
(tanh function) can also exist in such a lattice system.
The two types of modes in right- or left-moving form can
occur with different carrier wavevectors and vibrational
frequencies in separated parts of the ω(q) plane.
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We perform a numerical simulation based on the original
lattice equation of motion for the system, and the results
support our analytical prediction quite well. However, the
kink-envelope type of moving solutions, to the best of our
knowledge, has not been reported previously in either an-
alytical or numerical studies for this lattice system.

The paper is organized as follows. In Section 2 we use
the semidiscrete approximation to formulate the model as
an integrable system. In Section 3 we obtain analytically
all possible solutions with their velocities over the whole
ω(q) plane. The technique and the results of the numerical
simulations are presented in Section 4. Section 5 discusses
the results and concludes the paper.

2 Formalism of the model

We consider a one-dimensional lattice with nearest-
neighbor interactions between particles (molecules, atoms
or ions). The Hamiltonian of the system is given by

H =
∑
n

[
1
2
m

(
dun
dt

)2

+ V (un − un−1)
]
, (1)

where un = un(t) is the displacement of the nth particle of
mass m from its equilibrium position. The potential V (r)
is quite general. Typically it can be the standard two-
body potentials of Lennard-Jones, Born-Mayer-Coulomb,
or other more realistic model potentials depending on
the bond structure of the considered crystal. If we fo-
cus on rather small displacements that can be mea-
sured experimentally, without reconstruction or phase-
transition in the system, it allows us to Taylor expand
V (r) around r = 0, and truncate the power series to
the fourth-order [16]. For simplicity we neglect the third-
order term in the series. Then, the classical equation of
motion reads

m
d2un
dt2

= k2(un+1 + un−1 − 2un)

+ k4[(un+1 − un)3 − (un − un−1)3], (2)

where k2 and k4 are the harmonic and anharmonic cou-
pling constants, respectively. To simplify equation (2), we
transform the displacement into [8,14]

vn = un+1 − un (3)

without loss of generality. Then equation (2) becomes

m
d2vn
dt2

= k2(vn+1 + vn−1 − 2vn)

+ k4(v3
n+1 + v3

n−1 − 2v3
n). (4)

Analytical solutions to equation (4), giving a moving an-
harmonic mode, are sought by setting [8]

vn(t) = φn(t) cos(qna− ωt) (5)

where φn(t) is an envelope function, cos(qna−ωt) is a car-
rier wave with the rapidly varying phase, and q and ω are

the wavevector and vibrational frequency, respectively. In-
serting equation (5) into (4) and using the rotating-wave
approximation (RWA) which was proved [16] to accurately
remove higher-frequency harmonics in such nonlinear lat-
tices, we obtain a pair of equations. The correction to
RWA was found [16] to be a few percent and the ampli-
tude response from the higher-frequency components can
be ignored. This approximate method of analysis is suffi-
cient to separate the equation of motion. To satisfy at all
times the solution represented by equation (5), the coeffi-
cient of both the in-phase and out-phase oscillatory terms
must independently sum to zero. Then equating the sine
terms gives

− 2mω
dφn
dt

= sin(qa)(φn+1 − φn−1)

× [k2 + k4(φ2
n+1 + φn+1φn−1 + φ2

n−1)], (6)

and the cosine terms

d2φn
dt2

−mω2φn = k2[(φn+1 + φn−1) cos(qa)− 2φn]

+
3k4

4
[
(φ3
n+1 + φ3

n−1) cos(qa)− 2φ3
n

]
. (7)

This pair of coupled equations was obtained in
reference [8] by the same method for this lattice model.
Equation (6) can be used to determine numerically [8]
the envelope velocity of the mode. Note that for wavevec-
tors near Brillouin-zone boundaries, q = ±π/a, we can
see from equation (6) that φn is independent of time,
and the solution of equation (7) reduces to the previ-
ously determined stationary eigenmodes that appeared
in references [4–6]. It seems that exact solutions of this
set of nonlinear differential-difference equations do not ex-
ist. However, fairly good approximate analytical solutions
can be obtained. The numerical work [8] assumed that
the time variation of the envelope function is small com-
pared to that of the carrier wave, i.e., the term d2φn/dt2
in equation (7) was neglected. It may not be suitable
for wavevectors near the Brillouin-zone boundaries with
rather large vibrational frequency ω. However, in the
present work we will keep this second time differential
term in equation (7). Assuming that the characteristic
wavelength of the envelope is much greater than the lat-
tice spacing a, we can make a continuum approximation
(na→ x) for the envelope function

φn±1 = φ± aφx +
a2

2
φxx + higher terms. (8)

If we introduce a new variable ξ = x − V t (where V is
the envelope velocity to be determined) and insert it into
equation (6) with equation (8), to the second order we
obtain

V =
ak2 sin(qa)

mω

[
1 +

k4

k2
(3φ2 + 3a2φφξξ + a2φ2

ξ)
]
. (9)

We only consider the solution of small-amplitudes which
slowly vary in space for the system, so that φ, φξ and
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Fig. 1. A sketch of the regions for different types of mov-
ing modes existing in the ω(q) plane. Solid line: ω2 =
±k2 sin2(qa)/m cos(qa). Dashed line: ω2 = 4k2 sin2( qa2 )/m.

φξξ all are small. Therefore, to the main order, the group
velocity is reduced to

V = ak2 sin(qa)/mω, (10)

which is exactly the same as the result of the multiple-
scale method [10–13] for the same lattice system. For
equation (7) we let [14] φ3

n+1 ≈ φ3
n−1 ≈ φ3

n and insert
it into equation (7), with equations (8, 10), equation (7)
can be integrated as(

dφ
dξ

)2

=
B

A
φ2 − C

A
φ4 +D, (11)

where

A = a2k2
2 sin2(qa)/mω2 − a2k2 cos(qa),

B = mω2 − 4k2 sin2

(
qa

2

)
,

C =
3
2
k4 sin2

(
qa

2

)
, (12)

are constants dependent on the vibrational frequency ω
and the wavevector q, and D is the integration constant.
Then the equation of motion for the lattice system has
been reduced to a single integration expressible in terms
of elliptic functions.

3 Possible moving modes

In this section, we use the properties of such integration
to analyze equation (11) with possible choices for the con-
stants in equation (12), and to obtain analytical solutions.

We have to select D = 0 in equation (11) if we restrict
ourselves to the pulse envelope solution. As is known,
the even power coefficients in the expansion of any two-
body potential are always positive, and C also is positive,
so that the following two inequalities must be satisfied
simultaneously

A = a2k2
2 sin2(qa)/mω2 − a2k2 cos(qa) > 0,

B = mω2 − 4k2 sin2(
qa

2
) > 0. (13)

Fig. 2. A sketch of the regions for different types of mov-
ing modes existing in the |V (q)| plane. Solid line: |V | =

ν
p
± cos(qa). Dashed line for |V | = ν sin(qa)/2 sin( qa2 ).

The second inequality shows that the nonlinear effect
raises the vibrational frequency with respect to the linear
dispersion. Inequalities (13) determine a region in the ω(q)
plane where pulse-envelope moving modes exist, namely

4k2 sin2(
qa

2
)/m < ω2 < k2 sin2(qa)/m cos(qa),

0 < q < π/2a. (14)

This region in the ω(q) plane is shown in Figure 1 as I.
Within this region, the analytical expression for the pulse-
envelope moving modes is integrated as

vn(t) =

√
2B
C

sech
[√

B

A
(na− V t)

]
cos(qna− ωt), (15)

where A,B and C determined by equation (12) are func-
tions of the two fundamental parameters ω and q of the
modes, and the continuous variable has been replaced by
the discrete one. This right-moving mode was observed in
the numerical simulations of reference [8] for the same lat-
tice model. Moreover, from equations (10, 14) we obtain
the associated region of the envelope velocity in the V (q)
plane,

ν
√

cos(qa) < V < ν sin(qa)/2 sin
(qa

2

)
, 0 < q < π/2a,

(16)

where ν = a
√
k2/m is the sound velocity of the crystal.

This region in the V (q) plane is shown in Figure 2 as I,
and we see that the moving velocity of the envelope is
subsonic.

For the rather short wavelength range of the carrier
wave, it is appropriate to introduce [5] an opposite-phase
envelope function as φn = (−1)nψn. The Taylor expan-
sion of the difference (ψn±1 − ψn) up to the second order
together with the transformation ξ = x − V ′t, yields the
envelope velocity

V ′ = −ak2 sin(qa)/mω = −V. (17)

Then, the continuum approximation (8) yields(
dψ
dξ

)2

=
F

E
ψ2 − G

E
ψ4 +D, (18)
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which is solvable in terms of Jacobian elliptic functions.
In equation (18)

E = a2k2
2 sin2(qa)/mω2 + k2a

2 cos(qa),

F = mω2 − 4k2 cos2

(
qa

2

)
,

G =
3
2
k4 cos2

(
qa

2

)
, (19)

where D is also an integration constant. For the same
reason as above, we require the two parameters in
equation (19) to satisfy E > 0 and F > 0 simultane-
ously in order to support pulse-envelope solutions similar
to equation (15). Therefore, we find another region in the
ω(q) plane for the existence of the modes described by

4k2 cos2
(qa

2

)
/m < ω2 < −k2 sin2(qa)/m cos(qa),

π/2a < q < π/a, (20)

which is symmetrical to equation (14) about the q = π/2a
axis (region I’ as shown in Fig. 1). This left-moving mode
was obtained analytically and observed numerically in
references [12,15] for the same system. Also, the region
of the envelope velocity for the modes in the V (q) plane
can be transformed to

ν
√
− cos(qa) < V < ν sin(qa)/2 cos

(qa
2

)
,

π/2a < q < π/a, (21)

which is shown in Figure 2 as I’. It is also symmetrical to
equation (16) about the q = π/2a axis.

Next, if we select A < 0,B > 0 in equation (11) and let
the integration constant D = B2/2 | A | C, we find from
the integration of equation (11) a new type of envelope
moving mode

vn(t) = ±
√
B

C
tanh

[√
2 | A | B
C

(na− V t)
]
cos(qna− ωt).

(22)

This right-moving kink-envelope mode can exist when ω
and q are restricted to the region (shown in Fig. 1 as II)

k2 sin2(qa)/m cos(qa) < ω2 <∞, 0 < q < π/2a. (23)

Its velocity domain (shown in Fig. 2 as II) is

0 < V < ν
√

cos(qa), 0 < q < π/2a. (24)

Also for rather large wavevectors we have a left-moving
kink envelope solution similar to equation (22), and
the ranges of ω, V and q are totally symmetrical with
equations (23, 24) about the q = π/2a axis both in the
ω(q) and V (q) planes (shown as II’ in both Figs. 1 and 2).
The velocities of this new type of kink-envelope moving
mode are also subsonic.

Finally, we consider the case of wavevector q = 0.
From equations (14, 23) the vibrational frequency should

be ω ∼ 0. In this case the carrier wave disappears and the
problem must be analyzed by a direct long-wave approxi-
mation (see, e.g., an early review article [17] and the ref-
erences therein). If we keep the continuum expansion (8)
up to the fourth order and insert it into the equation
of motion (2), the well-known modified Korteweg-deVries
(mKdV) equation can be obtained [18]. Also, truncating
the Taylor expansion of the particle interaction potential
to the third order will result in the KdV equation. Gen-
erally, the solutions of these two equations are solitons.
These solitons of such elastic waves are therefore a spe-
cial case of the general nonlinear discrete lattice wave,
although KdV and mKdV are integrable [17,18] while the
discrete lattice is not.

4 Numerical results

In order to test the validity of the approximate analyti-
cal solutions obtained in the last section, we numerically
integrated equations (2, 4) by means of the general finite-
difference scheme with a time step ∆t = 0.02. In the sim-
ulation, the lattice spacing, the harmonic force constant
and the mass of the particles are all set equal to unity
for simplicity, and periodic boundary conditions are used.
The simulations typically last at least one hundred peri-
ods of the carrier wave and run over more than 400 lattice
sites in order to observe the long term stability, where
the scheme includes a strategy for adjusting the calcula-
tion stepsize to keep the relative and absolute error below
10−4 and 10−3, respectively.

Figure 3 shows the simulation results with solu-
tion (15) (t = 0) as input, where the anharmonic con-
stant k4 equals 1.5. In part (a), for the right-moving
pulse-envelope mode the two fundamental parameters q
and ω are restricted to region I of Figure 1, i.e., governed
by inequality (14). For the left-moving pulse-envelope
mode in part (b) the vibrational frequency is the same
as in part (a), but with wavevectors π/a− q. This choice
implies that the two parameters are restricted to region
I’ of Figure 1. When q and ω are chosen, the constants
A,B,C,E, F and G are determined by equations (12, 19),
respectively. In Figure 3 we see some characteristic fea-
tures of the numerical results for the moving pulse-
envelope modes. The faint ripples in the rear side of the
modes eventually run away, leading to a stable and uni-
formly right- or left-moving localized mode whose profile
is slightly modified from that of the input mode. The ex-
istence of the long-lived moving nonlinear localized modes
ensures the validity of the approximate analytical theory,
at least qualitatively.

Figure 4 shows the simulation results with solu-
tion (22) (t = 0) as input, where the anharmonic constant
is the same as in Figure 3. Similar to Figure 3, for the
right- and left-moving kink-envelope modes the two pa-
rameters q and ω are restricted to regions II (part (a)) and
II’ (part (b)) of Figure 1, respectively. We also observe a
stable and uniformly right- and left-moving kink-envelope
mode whose profile is slightly changed from the input.
The ripple radiation from the modes cannot be seen.
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Fig. 3. Space-time evolution of the particle displacements with equation (14) as input. The two parameters q and ω are restricted
to region I of Figure 1 for right-moving pulse-envelope mode (shown in part (a)) and to region I’ for left-moving pulse-envelope
mode (shown in part (b)), respectively.

It may be covered by the kink modes. This result is also in
agreement with the theoretical prediction. This new type
of kink-envelope moving mode has not been reported pre-
viously in either theoretical or numerical works.

5 Discussions and conclusions

As is known, the equation of motion for a lattice is
a second order differential equation. Its solution con-
tains two undetermined parameters. Physically, these two
fundamental parameters are wavevector q and vibrational
frequency ω. In the linear lattice case, the dispersion is
a curve in the ω(q) plane, and there is a one-to-one rela-
tionship between q and ω. However, in the nonlinear case
the vibrational frequency depends on both the wavevector
and the vibrational amplitude, and vibrational modes can
appear in different areas of the ω(q) plane. For the lat-
tice model considered in this work, the whole ω(q) plane
can principally provide moving modes except for an empty
area described by the relations 0 < ω2 < 4k2 sin2( qa2 )/m
(0 < q < π/2a) and 0 < ω2 < 4k2 cos2( qa2 )/m (π/2a <
q < π/a). That is to say, when q is determined, the vi-
brational frequency ω is above the corresponding linear

frequency but not necessarily above the maximum linear
frequency. This situation is in marked contrast to the case
of stationary nonlinear localized modes [4–6] which can
appear only above the maximum linear frequency.

For the pulse-envelope type modes, from the analyt-
ical expression (15), we know that the width of the en-
velope pulse is ∼

√
A/B, so it can be small enough to

involve only a few lattice spacings with some appropriate
values of ω and q. This case corresponds to the highly
localized modes in references [2,3]. Generally, the width
of an envelope pulse is much larger than the lattice spac-
ing and many particles are involved in the local vibration
forming a long wavelength characteristic envelope. More-
over, from equations (14, 20) (also see Figs. 1, 2) we can
see that the range of the wavevector becomes narrower
near q ∼ π/2a and the moving velocity becomes smaller
as the vibrational frequency increases. This result is in
good agreement with previous numerical simulations [8,9]
and it is quite reasonable to neglect the term d2φ/dt2 ∼
o(V 2) in the high vibrational frequency case. For the
kink-envelope type of moving modes, however, the range
of q becomes wider as ω increases. Previous numerical
work [8] did not find this type of solution because of its ne-
glect of the second time differential term in equation (7),



212 The European Physical Journal B

Fig. 4. Space-time evolution of the particle displacements with equation (21) as input, the two parameters q and ω are
restricted to region II of Figure 1 for a right-moving kink-envelope mode (shown in part (a)) and to region II’ for a left-moving
kink-envelope mode (shown in part (b)), respectively.

leading to an initial pulse-like profile as input. The previ-
ous analytical studies did not find this type of solution ei-
ther. The reason may be that in the multiple-scale expan-
sions only the main component is considered [12,13] and
the equation of motion is directly reduced to a nonlinear
Schrödinger equation with bright-soliton (pulse-like enve-
lope) solutions only. However, because the carrier-wave
phase varies very fast, the change of sign for the kink-
envelope function is meaningless when na = x → ±∞. If
the second or higher order components in the multiple-
scale expansions are considered, a nonlinear Schrödinger
equation with both bright- and dark-soliton solutions
(kink-like envelope) may be obtained. Therefore, this kink-
envelope type of solution may correspond to the dark-
soliton solution of the nonlinear Schrödinger equation of
previous analytical works [12,13], at least approximately.
Therefore, our analytical results are quite general and con-
tain all kinds of existing localized modes for this simple
nonlinear lattice system. Although the RWA and contin-
uum approximations will bring some inaccuracy in our ap-
proach (e.g., numerically observed faint ripples in Fig. 3),
the analytical results are qualitatively correct and suitable
for such a lattice system.

On the boundary lines of different regions in the ω(q)
plane, all constants in equations (11, 18) tend to zero.

In this critical case the solutions may be trivial or imply a
structural phase transition, or even show chaotic behavior
because of the instability [19,20]. It is worth mentioning
that our results, like the analytical expressions for both
moving [10,13] and stationary [4–6] modes, do not have a
simple limit for a vanishing nonlinear term in the system.
However, from the elliptic function equations (11, 18) we
can see, if C(∼ k4) ∼ 0, that both φ and ψ will be ex-
ponentially divergent. The real situation should then be
that the system possesses the discrete plane-wave solu-
tion. Moreover, if the third term of the Taylor series of
the potential is added to equation (2), the pulse-envelope
solutions will be distorted by a kink [8,21]. The change
of the kink-envelope solution itself is still unknown in
this case.

In conclusion, we have solved analytically the quartic
anharmonic one-dimensional lattice equation by means of
a semi-discrete continuum approximation. Two different
types of moving modes are found for such a lattice system.
The pulse-envelope moving modes found in this paper are
similar to those in both the analytical and numerical ref-
erences. The kink-envelope moving modes have not been
reported previously. Both seem physically reasonable. The
two types of moving modes occur with different carrier
wavevectors and frequencies in separate parts of the ω(q)
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plane. The velocities of the two types of moving modes
are both subsonic. The numerical simulations support our
analytical results quite well. Although some results in this
paper appeared previously and might be well-known, and
the method used is very simple and direct, we believe that
this research provides some systematical information and
that it will be useful for solving other nonlinear lattice
systems.
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